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We consider the problem of torsion of a cylindrically anisotropic elastic

rod in the shape of a solild of revolution acted upon by forces dilstributed
over 1ts end and side surfaces. It 1s assumed that at each polnt of the rod
there 1s a plane of elastic symmetry that passes through its geometric axis,
or (a more special case) that the rod 1s orthotropic, 1.e. that there are
three planes of elastlc symmetry at each poilnt, and that the elasticity
modull in general depend on the cylindrical coordinates 7, z . The follow-
ing cases are studied: that of a conical rod twisted by torques applied at
its ends, and of a cylindrical rod acted upon by torslonal forces distributed
over its side surface.

1. General Equations. We first consider the case of a cylindrically
anlsotropic elastic rod in the shape of some solld of revolutlon, whose axis
of anisotropy coincides with the geometric z-axis, In the general case, we
assume that at each point there is a single plane of elastic symmetry that
passes through the z-axls. We also assume that the materlal of the rod obeys
the generalized Hooke's law, and experiences small deformations under stress.

Let the rod be acted upon by two
types of forces: (1) those distributed
over the butt ends of the rod and redu-
cible to the torques ¥ and #’, and
(2) the forces «t, (s) distributed over
the side surface of the rod, where s
is the arc of the axial (meridian) sec-
tion (Fig.1). As in the case of an
1sotropic rod, it 1s possible to con-
struct a complete system of torslon
equations, assumlng that only two of
the six stress components are different
from zero, and that only one of the
three displacement components 1s not equal to zero, As our initlal assump-
tions we take (see [1], p.249)

Op =0p=06, = T, = 0, Toz =Ty, (ry 2), Tro = Trg (r-2)
u=w =20, uy=uy(rz)

(1.1)

This eliminates all but three equations of the baslc system of elasticity
theory
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(1.2)

7] (rgrrg) 7] (r21:91) d Ug 1 0 Up 1
Gt =0 L= (2447p, + GasTro) o (a46Ty, + ag67Tg)

We will consider the deformation coefficlents a,,, a« s age tO be any
differentiable functions of the coordinates r and z ; the remaining 10
coefficients g,, from the equations expressing the generalized Hooke's law
do not appear 1n the equations of torsion in any form, and can therefore be
elther constant or varlable. We introduce the stress function ¢ (r,z) vy
means of Equations

1oy . 1 0y
Ti= e To= — 5ge (1.3)
. Eliminating the displacement from system (1.2), we obtain the equation
or } :
ﬁ 1 op oy a1 op PN\ __
ar [}7 (“44 ar Q4 5?)} 7z [’-_g (‘146 ar Zes 5;)] =0 (1.4)

The boundary conditions on the side surtace are of the same form as in

the case of an isotropic rod s

T €08 (1, 2) 4 Tgc08 (n, ) = T, (5) of = —s2 S Tds -+, (1.5)
1]

If the torsional forces are distributed over the butt ends only, then
along the contour of the meridian section § = §,= const .

Equation (1.4) 1is sim-
plified in the case of an
orthotropic rod. If at
each polnt there are three
planes of elastic symmetry,
one passing through the
axls, another normal to
the z-axls, and the third
orthogonal to the first
two, then a, =0, and
in place of a,, and gg
it is more convenient to
introduce shear moduli:
6, = 1/a,, — the shear
modulus for planes paral-
lel to the axis of the rod and normal to the direction of I , and g,= 1/¢, —
the shear modulus for the transverse cross-sectional planes, 1l.,e., planes
normal to 2z .

Equation (1.4) then becomes

Fig. 2.

We shall indicate below some classes of the functions ¢, and ¢, , for
which the problem of torsion of conical and cylindrical rods may be solved
Just as simply as for homogeneous and isotroplc rods.

2. Torsion of a oonioal rod. We consider a rod in the form of a trun-
cated circular cone with a fixed base and a free side surface., Over the
small end are distributed forces that are reducible to the torque x (Fig.2).

On the side surface r

z < 24

the stress function ¢ takes on a constant value; the difference between
the values of this function at the surface and at the axis 1s proportional
to the moment ([1], p.250)

= tanQ 2.1

‘ _ M
Y (wna) —P(0) = ory (2.2)
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For a rod bounded by two conical surfaces with a common vertex, whose
generators from the angles o and g, with the g-axis, instead of (2.2) we

have
P (tana) — 1 (waag) = 1/,M /n (2.3)

In order for conditions (2.2) or (2.3) to be satisfied, the stress func-
tion must be of the form

Y= f(t) t=r/t, L =z+ 1) (2.4)
We point out two cases of shear modulus variation for which the solution
can be found in an elementary fashion.

Case 1. The modull G, = G (i), G, = G; () are arbitrary functions
of the ratlo ¢ .

Substituting (2.4) into (1.6), we obtain Equation
1 1 1 1 3
—t =) (¢ LA = _ 1 f®=0 2,
(Glta+ Gzt) 7o+ [(Glts T Gyt ) + Gzzz}f @ (2.5)
Integrating, we obtailn expressions for y’(t) , the stresses, and the dis-

placement

G,G,7° —4 GG () v =4 GGt (1)

) =A 2L o), Ty,= ¥/ ki AN,
FO=demyia®® ™=agrra M part G
_ Gyto (1) , Gyt
=4(__Go®) 4 t) = exp [—3 _l_,dt)) 2.6
Ho SCS(GltZ-F G,) ttoer ((P() p( 861t2+ Gy @8
The constant 4 1s determined from conditions (2.3) of (2.2)
M 1 G,G,13
A= _" )= 172 o(t)d 2.7
21 f; (a0 @) — f; (tanQo) @) Glt2+G2(P() : 1)
With power dependence of the shear modull on ¢ , when
G, = g™ Gy = gat" (2.8)
we obtalin the stresses and displacement
4 r'n+1 A rn+2 (2 9)
Ty, — 48182 1 T = Af1f2 ————————— .
’ e + gald™ ’ (e + gal)"
g = — Ar + or (2.10)

3 (g% + 8’2C2)!/2

In particular, if the shear modull are inversely proportional to t?® (n=-2),
we obtaln

3 2
ng=Ag1g2-——§———-7 ’ 1,',.9=Ag1g2___2§_——5/ (2-11)
r{gr® + gL " (817 + 23"
A= _3M 1 . 2.12)
28 (g1 w0 + g2 — (g uwe Og + g2) "
Case 2 . The shear modull change according to a power law,

Gy = g1, I"EP, Gy = gzr"c” 2.13)

In this case there also exists a solution of Equation (1.6) that depends
only on the ratio ¢ , and, as may be easlly shown, 1s of the form

f @) = A3 (g 4 g) N W =1+ p+5) (2.14)
The stress components are
n+1sp+1 n+2 =P
Tpp=A—L & 0= ¢ .15)

(a1 + gzgz)N ’ (gr* + gzgz)N
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The constant 4 18 found from one of Formulzs (2.2) or (2.3), where
o = § 0 e gy N (2.16)

We note that the problem of torsion of s0lid nad hollow homogeneous iso-
tropic conical rods under the action of various torsional loads is dealt
with in greal detail in the monograph of Arutiunian and Abramian [2].

3. Torsion of a oylindriocal rod due to forces distributed over the side
surfeace. We now conslder the case of a cylindrically anisotroplec and ortho-
tropic, hollow or solld circular cylindrical rod, one or both of whose ends
are fixed, and over whose slde sutface are distributed tangential torsional
forces that vary along the length of the rod, but remain constant along the
cross-sectional circumferences (Fig.3). The shear modull are specified as
functions if a single coordinate r ., To be more specific, let the right
end Z =1 be fixed, and the left end
2z = 0 free, We assume that the tan-
gential forces can be represented by
Fouriler series on the interval (0, 1)
and expand them 1n sine series, For
the case of the hollow cylinder, we then
have the following boundary conditions
at the surfaces 7 =@¢ and 7 = p :

[ee]

ﬁ T,y = 2 Mgy sin
Y" k=1

knz fOl’ r=a,

oo
T = Z My S!n.kﬁ;f. for r=1¢%

Fig.
g 3 k=1 {3.1)

In accordance with these conditions, we seek the stress function ¢ in
the form

(a0}
k
Y =Ry (r) + D) Ry () cos_?z_ (3.2)
=1
From Equations {1.6) we obtain the expression for R,
Ry = A, \Glﬁd?’ -+ By (3.3)
and the equation for A,
" 1y kmy? G,
m 4 6 () & = (T) G e =0 &4

With arbitrary ¢, and @,, this equatlion is not integrable in general
form.

The problem may be solved in an elementary way with the aid of series by
representing the shear modull as power functions of the distance 7 from
the axis.

Let the moduli be glven in the form
G=g (riah Gy =gy (r/a)® (3.5)

(m, n are arbitrary real numbe-s; they may be integers, fractions, positive,
negative, or zeros). Equation (3.4) becomes

2 m-n
, m+3 kN gy r N
Rk - r RA' - (T) _g_'; g Rk =0 (3.6
The integral of thls equation 1s expressed in terms of Bessel functions,
and for specific values of m and n - in terms of elementary functions.

We introduce the notation
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3.7)
m 4+ 4 m—n-+2 ke 1, g\ , m -+ 4
= — _—— — = V(n-m) [ 51 —
¢ z > B 2 T 1 B¢ ( gz) » N=m—% -+ 2

If ¥ 1s a fraction, the general solution of Equation (3.6) 1is prreséed
in terms of Bessel functlons of the lmaginary argument J 'yrﬁ) = ;N Iy (i'yrﬁ)
and ]_N(yr%, an¢ the general expression of the stress tlinction become’

o0
b =A™ 4 S 140y (78 - By (1rP)] 77 cos k;‘_"' (3.8)
k=1

As in above expression, the constant p, will henceforth be omitted, since
it has no effect on the stress.

If ¥ 1s a whole number or zero, the function131_ in, Expression (3.8)
must be replaced by the MacDonald function Ky (177) T[3J, pp.46-47). The
constants 4, and B, are determuned from the boundary conditions (3.1) at
the cylindrical surfaces.

With the same dependence of the moduli on pr , i.e. with m = n,
B =1, =kn/l, N=|a| 3.9)

Let us indicate the expresslons for ¢ for several speclal cases of power
dependence of ¢, and (G, on r .

1. Linear dependence .
G, = gyrila, Gy = gor [ a, m=1, a = —5/,, N =3/, (3.10)

Bessel functions whose order is equal to an integer plus one-half are, as
we know, expressible in terms of elementary functions ([ 3], pp.57-70). In
the case 1n questlon, we have

¥ = Ay® + D) {4y [(3 4 12%) coshyr — 3yr sinhyr]

k=1
knz
+ By [e~ 3Yreoshyr 4 (3 + T2r%)sinh yr]} cos =~ @.11)
2. Inverse proportlionality:
G =gualr, Gy, =gaalr, m=—1, a = —3%/,, N =3, (3.12)
In thils case § 1s also expressed 1in terms of elementary functions.
oo
Y= A+ Z‘, [Ay GiohTr — Yreoshyr) -+ B, (¢oshYr — Trsinhyr)] cos Fz (8.13)
k=1

3. Quadratic dependence

G=g(rla? Gy=g(r/a? m=2 a=-3 ~N=3 (3.14)
§ = Ayt 4+ D) [ d5 (1) - By Ky (17)] 1 cos i‘;‘;’- (3.15)
k=1

4, Moduli inversely proportional t o
t he square of t he distance:
Gi=g /N G=g@/n m=-2 a=—1, N=1(3.16)
[e.¢]
Y= Ayt + O (A, (1) + Bk, (11)] cos E’T‘ﬁ 3.17)
k=1
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Finally, there 1s the speclal case where the stress function 1s expres-
sible in terms of elementary functions.

Let the moduli be given in the form
Gy = g1 (r/a)™, Gy = gp (rfa)"*? (3.18)

Equation {3.6) degenerates into an Euler equation, and the general expres-
sion for the function ¢ 1s

oo
b =A™ 4 3 (Ar® - B cos ﬁ’lﬁ (3.19)
par

Here we have introduced the new notation
m - 47\2 Eny: 7 m 4
S:K 2 )‘*(7’)4 +T3

[ ()

The above exiressions for the stress functlon permlit exact fulfiliment of

! s
¢="7" g = (*6;2"> (3.20)

conditions (3.1) at the inner and outer cylindrical surfaces, since for con-
stants 4,, B, (k =1, 2, 3, ...) these conditions give us the necessary and
sufficien% number of equations, At the ends z =0 and 2z =1 , the stress
i1s generally reducible to torques. If one end 1s fixed whlle the other is
free, 1t is possible to get rid of the "extra" torque by determining the con-
stant 4, in such a way that the torque at the end is equal to zero {clearly,
this is always possible). If both ends are fixed, it 1s possible to satisfy
the required conditions by adding to the solution obtained with the aid of
the function § the elementary solution for torsion due to the torques
acting at the ends.
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