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We consider the problem of torsion of a cylindrically anlsotroplc elastic 
rod In the shape of a solid of revolution acted upon by forces distributed 
over Its end and side surfaces. It Is assumed that at each point of the rod 
there Is a plane of elastic symmetry that passes through Its geometric axls, 
or (a more special case) that the rod is orthotropic, I.e. that there are 
three planes of elastic symmetry at each point, and that the elasticity 
modull In general depend on the cylindrical coordinates r, z . The follow- 
ing cases are studied: that of a conical rod twisted by torques applied at 
Its ends, and of a cylindrical rod acted upon by torsional forces distributed 
over Its side surface. 

1. Oanrrrl Eqamtlonr. We first consider the case of a cylindrically 
anlsotroplc elastic rod In the shape of some solid of revolution, whose axis 
of anisotropy coincides with the geometric x-axis. In the general case, we 
assume that at each point there Is a single plane of elastic symmetry that 
passes through the x-axis. We also assume that the material of the rod obeys 
the generalized Hooke's law, and experiences small deformations under stress. 

Let the rod be acted upon by two 
types of forces: (1) those distributed 
over the butt ends of the rod and redu- 
cible to the torques M and M', and 
(2) the forces T,(S) distributed over 
the side surface of the rod, where s 
Is the arc of the axial (meridian) sec- 
tion (Flg.1). As In the case of an 
isotropic rod, It Is possible to con- 
struct a complete system of torsion 

Fig. 1 equations, assuming that only two of 
the six stress components are different 
from zero, and that only one of the 

three displacement components Is not equal to zero. 
tions we take (see Cl], p.249) 

As our Initial assump- 

ur = Cro = QZ = z,, = 0, %r = TO* (r, z), z,c = z,a(r,-2) 
up =w = 0, %I = ua (PI 2) 

(1.1) 

This eliminates all but three equations of the basic system of elasticity 
theory 
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We will consider the deformation coefficients ab4, aret ace to be any 
differentiable functions of the coordinates 7 and _- ; 
coefficients 

the remaining 10 
a,, from the equations expressing the generalized Hooke’s law 

do not appear In the equations of torsion In any form, and can therefore be 
either constant or variable. 
means of Equations 

We Introduce the stress function Jr (r,z: by 

(1.3) 

Ellmlnatlng the displacement from system (1.2), we obtain the equation 
for $ : 

(1.4) 

The boundary conditions on the side surface are of the same form as in 
the case of .an isotropic rod s 

~grCOS (72, z) + Zrecos (71, r) = T’, (s) or $ = -r2 (T&T++, (1.5) 
0 

s th e butt ends only, then 
$0 = const . 

Equation (1.4) Is slm- 
plified In the case of an 
orthotropic rod. If at 
each point there are three 
planes of elastic symmetry, 
one passing through the 
axis, another normal to 
the z-axis, and the third 
orthogonal to the first 
two, then ars = 0 , and 
In place of a, and aBB 
it is more convenient to 

Fig. 2. Introduce shear modull: 
G, = l/a,, - the shear 
modulus for planes paral- 

lel to the axis of the rod and normal to the direction of 7 , and G2= l/a,, - 
the shear modulus for the transverse cross-sectional planes, i.e. planes 
normal to 2 . 

Equation (1.4) then becomes 

(1.6) 

We shall Indicate below some classes of the functions CL and G, , for 
which the problem of torsion of conical and cylindrical rods may be solved 
Just as simply as for homogeneous and isotropic rods. 

2. Torrlon of a oonlobl rod. We consider a rod in the form of a trun- 
cated circular cone with a fixed base and a free side surface. Over the 
small end are distributed forces that are reducible to the torque M (Fig.2). 
On the side surface I 

= tan-a 
2 -f- zlj 

(2.1) 

the stress function $ takes on a constant value; the difference between 
the values of this function at the surface and at the axis is proportional 
to the moment ([ 11, p .250) 

M 
+iJ (t”a) --NO) = - 25c 

(2.2) 
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For a rod bounded by two conical surfaces with a common vertex, whose 
generators from 
have 

In order for 
tion must be of 

the ar$les Q and a0 with the x-axis, Instead o? (2.2) we 

9 (-a) --Q (ma,) = ‘/aM /a (2.3) 

conditions (2.2) or (2.3) to be satisfied, the stress func- 
the form 

* = f (t) (t=r/5,t=z+z,) (2.4) 

We point out two cases of shear modulus variation for which the solution 
can be found In an elementary fashion. 

of 
Case 1. The modull G,= G1(t), G, = G,(t) are arbitrary functions 
the ratio t . 
Substituting (2.4) Into (1.6), we obtain Equation 

&-a + &) f” (t) + [(& + &) + &] f’ (t) = 0 (2.5) 

Integrating, we obtain expressions for f’(t) , the stresses, and the dls- 
placement 

f' (t) = A GIG,tS cp (t), A GIG&P (t) 
Gt2 + G, %= $” G,t2 + G,' 

z,. = A_ GIG& (t) 
5" G,t2 + G, 

u, = A s Wcp 0) dc $- or cp (t) = exp 
( 

Glt 
5” (Gt2 + GJ G,t2 + G, 

tit 
1) 

(2.6) 

The constant A Is determined from conditions (2.3) of (2.2) 

A=M 1 

2Jl fl (9 4 - fl baao) ’ 
fl (t) = 'lGzt3 cp (t) dt 

Glt2 + G2 
(2.7) 

With power dependence of the shear modull on t , when 

G1 = g#=, G2 = g2tn 

we obtain the stresses and displacement 

(2.8) 

p+1 rn+2 
z oz =&g2 

bn-1(glr2 + g252)v' ' 53 = Ag1g2 ,y(glP2 + g2p)% 
(2.9) 

Ar UQ = - 
3 (g,r2 + g252)1" 

+ or (2.10) 

In particular, If the shear modull are Inversely proportional to t2 (n=-2), 
we obtain 

z c2 
ez = Am2 c3 

r (glr2 + g2C2)‘/’ ’ 
z re = 4x2 

(gIr2 + g2C2P 
(2.11) 

A=.-_ 1 

2J% (g1 taxi2 u + g2j3 ‘2 - (gl tad2 a, + g,P 
(2.12) 

Case 2. The shear modull change according to a power law, 

G, = gl, r'??', G2 = g2r"cp (2.13) 

In this case there also exists a solution of Equation (1.6) that depends 
only on the ratio t , and, as may be easily shown, 15 of the form 

f’ (t) = Atn+3(glt2 + g2)-N (N = l/z (n + P + 5)) (2.14) 

The stress components are 
p+2 P 

T 
,n+1 pr1 

5 

‘*= A (g,r2 + g2c2)N ' 
z ze = A 5 

(g1r2 + g2L2P 
(2.15) 
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The constant A is found from one of Formules (2.2) or (2.3), where 

fi (t) --: 1 P+s (g# 3 g&"dt (2.l6) 

We note that the problem of torsion of solid nad hollow homogeneous lso- 
tropic conical rods under the action of various torsional loads Is dealt 
with in great detail In the monograph of Arutlunlan and Abramian 121. 

3, To~orrlon of a o$Mn4rlorl rod 4~ to foroer dirts-rlbutrd over the rfdr 
rurs@or. We now consider the case of a cyllndrlcally anlaotroplc and ortho- 
tropic, hollow or solid circular cylindrical rod, one or both of whose ends 
are fixed, and over whose side sutface are distributed tangential torsional 
forces that vary along the length of the rod, but remain constant along the 
cross-sectional circumferences (Flg.3). 
functions If a single coordinate r . 

The shear modull are specified as 
To be more specific, let the right 

end z = 1 be fixed, and the left end 
z-0 free. We assume that the tan- 
gential forces can be represented by 
Fourier series on the interval (0, 2) 
and expand them in sine series. For 
the case of the hollow cylinder, we then 

a have the following boundary conditions 
at the surfaces r3a and r=b: 

z rO = ; rrzak sin - 
k=r 

ky for p= a, 

Fig. 3 
z G 

i-0 = A “bk 
srnknz for r =‘b 

1 
k=l (3.1) 

In accordance with these conditions, we seek the stress function JI In 
the form 

$ = R0 (r) + i I?, (r) cost (3.2) 
k-=1 

From Equations (1.6) we obtain the expression for A, 

R,=il, c G,Pdr + B, (Xi} 
U 

and the equation for I), 

R," + G,r3 (&)‘.Rk’ - (rj2$Rk = 0 (3.4) 

With arbitrary G, and O,, this equation is not Integrable in genera: 
form. 

The problem may be solved In an elementary way with the aid of series by 
representing the shear modull as power functions of the diStarX?e r from 
the axis. 

Let the moduli be given In the form 

G, = g, (r i Q)~, G, = g, (r / a)" (3.5) 

(m, n are arbltrar real numbe-s; they may be Integers, fractions, positive, 
negative, or zeros 3 . Equation (3.4) becomes 

R,” - 
’ g1 rmmn 

m+Rkt-(F) 82-GRk=0 (3.6) 

The integral of this equation Is expressed in terms of Bessel functions, 
and for specific values of m and n - in terms of elementary functions. 

We Introduce the notation 
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If N Is a fraction, the general solution of Equation (3.6) Is expressed 
In terms of Bessel functions of the Imaginary argument 1 
and I_, (VP), and the general expression of the stress f&l 

(??) = i-" J,(i~rp) 
ctlon becomes 

4 = A,,rmtg + i [A,[, (+) + B,;I_, (+)I r+ cos ‘F (3.8) 
Ii-1 

As In above expression, the constant & will henceforth be omltted,slnce 
It has no effect on the stress. 

If N Is a whole number or zero, the function I_ ln,Expresslon (3.8) 
must be replaced by the MacDonald function KN(TrP) r[ 33, pp.46-47). The 
constants Ax and B, are determuned from the boundary conditions (3.1) at 
the cylindrical surfaces. 

With the same dependence of the moduli on r , I.e. with m = n, 

P 1, = r = kn / 1, N==lal (3.9) 

Let us Indicate the expressions for $ for several special cases of power 
dependence of c, and ca on r . 

1. Linear dependence; 

G, = gIrla, G, = g2r i a, 1n = 1, a = - =12, N = 5/z (3.10) 

Bessel functions whose order Is equal to an Integer plus one-half are, as 
we know, expressible In terms of elementary functions ([3], pp.57-70). In 
the case In question, we have 

-+ = A,r5 + z {Ak [(3 + r2r2)coshp - 3Tr SiWr] + 

k=l 

knz 
+ B, [c- 3pcoshrr f (3 + T2r2)Qih’Vl) COS 7 (3.11) 

2. Inverse proportlonallty: 

G1 = gla I r, G, = gas / r, m = -1, a = -3/2, N = s/a (3.12) 

In this case $ Is also expressed in terms of elementary functions. 

'II) = A,r3 + i [Ak (‘- a*Tr - Trunh’rr) +- B, (@rr - rrstiyr)] CCJS$? (3.13) 
k=l 

3. Quadratic dependence: 

G, = gl (r i a)2, G, = g2 (r /UP, m = 2, a= -3, N=3 (3.14) 

M 

'I) = A,-,@ +. 2 [Ak13 (yr) + B,K, (rr)] r3 cos F 

k=l 

(3.15) 

4. Modull Inversely proportional to 

the square of the distance: 

G1 = gl (a / V, G, = gz (a / r)2, m = -2, a= -1, N = 1 (3.16) 

$ = AOr2 + z [AkZ, (Tr) + B,K, (rr)] cos T (3.17) 
k=l 
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Flnally, there is the special case where 
sible in terms of elementary functions. 

Let the moduli be given in the form 

GI = &‘I (F/U)%, Gz = gz (r/a) m+2 (3:18) 

Equation (3.6) _ degenerates Into an Euler equation, and the general expres- 
slon for the function $ Is 

the stress function is expres- 

Here we have Introduced the new notation 

The above ex ressions for the stress function permit exact fulfillment of 
conditions (3.1 at the inner and outer cylindrical surfaces, since for con- 
stants ,4 & P k = 1, 2, 3, . ..) these conditions give us the necessary and 
sufflclen)t’number of equations, At the ends z = 0 and z = t the stress 
Is generally reducible to torques. If one end Is fixed while th; other is 
free, it is possible to get rid of the “extra” torque by determining the con- 

In such a way that the torque at the end is equal to zero (clearly, 
tk!?is’$lways possible) If both ends are fixed, it 1s possible to satisfy 
the required conditions by adding to the solution obtained with the aid of 
the function t the elementary solution for torsion due to the torques 
acting at the ends. 

1. Lekhnltskll, S.G., Teoriia uprugosti anizotropnogo tela (Theory of Elas- 
ticity of Anisotropic Bodies). Gostekhteoretlzdat, R.-L., 1950. 

2. Arutiunian, N.Kh. and Abramian, B-L., Kruchenle uprugikh tel (TOrSlOn of 
Elastic Bodfee). Fizmatgiz, R., 1963. 

3. Kuz’mln, R.O., Besselevy funktsii (Bessel functions). ONPI, 1935. 

‘Pranslated by A.Y. 


